Author Affiliations
Abstract
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
2 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
There has been a long fundamental pursuit to enhance and levitate the Raman scattering signal intensity of molecule by a huge number of ~ 14–15 orders of magnitude, to the level comparable with the molecule fluorescence intensity and truly entering the regime of single-molecule Raman spectroscopy. In this work we report unambiguous observation of single-molecule Raman spectroscopy via synergic action of electromagnetic and chemical enhancement for rhodamine B (RhB) molecule absorbed within the plasmonic nanogap formed by gold nanoparticle sitting on the two-dimensional (2D) monolayer WS2 and 2 nm SiO2 coated gold thin film. Raman spectroscopy down to an extremely dilute value of 10–18 mol/L can still be clearly visible, and the statistical enhancement factor could reach 16 orders of magnitude compared with the reference detection sample of silicon plate. The electromagnetic enhancement comes from local surface plasmon resonance induced at the nanogap, which could reach ~ 10–11 orders of magnitude, while the chemical enhancement comes from monolayer WS2 2D material, which could reach 4–5 orders of magnitudes. This synergic route of Raman enhancement devices could open up a new frontier of single molecule science, allowing detection, identification, and monitor of single molecules and their spatial–temporal evolution under various internal and external stimuli.
PhotoniX
2024, 5(1): 3
Author Affiliations
Abstract
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
We present a detailed theoretical and numerical analysis on the temporal-spectral-spatial evolution of a high-peak-power femtosecond laser pulse in two sets of systems: a pure lithium niobate (LN) plate and a periodically poled lithium niobate (PPLN) plate. We develop a modified unidimensional pulse propagation model that considers all the prominent linear and nonlinear processes and carried out the simulation process based on an improved split-step Fourier transformation method. We theoretically analyze the synergic action of the linear dispersion effect, the second-order nonlinearity (2nd-NL) second-harmonic generation (SHG) effect, and the third-order nonlinearity (3rd-NL) self-phase modulation (SPM) effect, and clarify the physical mechanism underlying the peculiar and diverse spectral broadening patterns previously reported in LN and PPLN thin plate experiments. Such analysis and discussion provides a deeper insight into the synergetic contribution of these linear and nonlinear effects brought about by the interaction of a femtosecond laser pulse with the LN nonlinear crystal and helps to draw a picture to fully understand these fruitful optical physical processes, phenomena, and laws.
Photonics Research
2024, 12(4): 774
Author Affiliations
Abstract
1 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, State Key Laboratory of High Field Laser Physics, Shanghai, China
2 South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
A supercontinuum white laser with ultrabroad bandwidth, intense pulse energy, and high spectral flatness can be accomplished via synergic action of third-order nonlinearity (3rd-NL) and second-order nonlinearity. In this work, we employ an intense Ti:sapphire femtosecond laser with a pulse duration of 50 fs and pulse energy up to 4 mJ to ignite the supercontinuum white laser. Remarkably, we use water instead of the usual solid materials as the 3rd-NL medium exhibiting both strong self-phase modulation and stimulated Raman scattering effect to create a supercontinuum laser with significantly broadened bandwidth and avoid laser damage and destruction. Then the supercontinuum laser is injected into a water-embedded chirped periodically poled lithium niobate crystal that enables broadband and high-efficiency second-harmonic generation. The output white laser has a 10 dB bandwidth encompassing 413 to 907 nm, more than one octave, and a pulse energy of 0.6 mJ. This methodology would open up an efficient route to creating a long-lived, high-stability, and inexpensive white laser with intense pulse energy, high spectral flatness, and ultrabroad bandwidth for application to various areas of basic science and high technology.
intense white laser optical-damage-free water third-order nonlinearity second-order nonlinearity 
Advanced Photonics Nexus
2024, 3(1): 016008
Author Affiliations
Abstract
1 Zhengzhou University of Aeronautics, School of Materials Science and Engineering, Zhengzhou, China
2 Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing, China
3 South China University of Technology, College of Physics and Optoelectronics, Guangzhou, China
Metasurfaces have emerged as a flexible platform for shaping the electromagnetic field via the tailoring phase, amplitude, and polarization at will. However, the chromatic aberration inherited from building blocks’ diffractive nature plagues them when used in many practical applications. Current solutions for eliminating chromatic aberration usually rely on searching through many meta-atoms to seek designs that satisfy both phase and phase dispersion preconditions, inevitably leading to intensive design efforts. Moreover, most schemes are commonly valid for incidence with a specific spin state. Here, inspired by the Rayleigh criterion for spot resolution, we present a design principle for broadband achromatic and polarization-insensitive metalenses using two sets of anisotropic nanofins based on phase change material Ge2Sb2Se4Te1. By limiting the rotation angles of all nanofins to either 0 deg or 90 deg, the metalens with a suitable numerical aperture constructed by this fashion allows for achromatic and polarization-insensitive performance across the wavelength range of 4–5 μm, while maintaining high focusing efficiency and diffraction-limited performance. We also demonstrate the versatility of our approach by successfully implementing the generation of broadband achromatic and polarization-insensitive focusing optical vortex. This work represents a major advance in achromatic metalenses and may find more applications in compact and chip-scale devices.
metasurfaces broadband achromatic metalenses polarization insensitivity phase change materials of Ge2Sb2Se4Te1 
Advanced Photonics Nexus
2023, 2(5): 056002
Author Affiliations
Abstract
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
2 Guangdong Jingqi Laser Technology Corporation Limited, Songshanhu, Dongguan 523808, China
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
Supercontinuum white laser with large bandwidth and high pulse energy would offer incredible versatility and opportunities for basic science and high technology applications. Here, we report the generation of high-efficiency 2.8-octave-spanning ultraviolet-visible-infrared (UV-Vis-IR) (with 350-2500 nm 25 dB bandwidth) supercontinuum white laser from a single chirped periodically poled lithium niobate (CPPLN) nonlinear crystal via synergic high-harmonic generation (HHG) and self-phase modulation (SPM). The CPPLN exhibits multiple controllable reciprocal-lattice bands to simultaneously support the quasi-phase matching (QPM) for simultaneous broadband 2nd-10th HHG via cascaded three-wave mixing against a broadband fundamental pump laser. Due to the efficient second-order nonlinearity (2nd-NL) up-conversion and significant 3rd-NL SPM effect both in the pump and HHG laser pulses, 350-2500 nm supercontinuum white laser is eventually obtained with 17 μJ per pulse under pump of 45 μJ per pulse mid-infrared femtosecond laser corresponding to an average high conversion efficiency of 37%. Our work opens up a route towards creating UV-Vis-IR all-spectrum white lasers through engineering the synergic action of HHG and SPM effects in nonlinear crystals for applications in ultrafast spectroscopy, single-shot remote sensing, biological imaging, and so on.
PhotoniX
2023, 4(1): 11
Author Affiliations
Abstract
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
2 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
We propose a pseudospin-field-dependent waveguide (PFDW) by constructing a sandwiched heterostructure consisting of three magneto-optical photonic crystals (MOPCs) with different geometric parameters. The upper expanded MOPC applied with an external magnetic field has broken time-reversal symmetry (TRS) and an analogous quantum spin Hall (QSH) effect, while the middle standard and the lower compressed ones are not magnetized and trivial. Attributed to the TRS-broken-QSH effect of the upper MOPC, the topological large-area one-way transmission that uniformly distributes over the middle domain is achieved and exhibits the characteristics of a pseudospin-field-momentum-locking; i.e., pseudospin-down (or pseudospin-up) leftward (or rightward) waveguide state when the positive (or negative) magnetic field is applied on the upper MOPC. We further demonstrate the strong robustness of the PFDW against backscattering from various kinds of defects. In addition, a topological beam modulator that can compress or expand the light beam, and a large-area pseudospin beam splitter have been designed. These results have potential in various applications such as sensing, signal processing, and optical communications.
Photonics Research
2023, 11(6): 1105
Author Affiliations
Abstract
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
2 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
Antichiral gyromagnetic photonic crystal (GPC) in a honeycomb lattice with the two interpenetrating triangular sublattices A and B magnetically biased in opposite directions can realize antichiral one-way edge states propagating along the same direction at its two parallel edges. Here, we report the construction and observation of topological beam splitting with the easily adjustable right-to-left ratio in an antichiral GPC. The splitter is compact and configurable, has high transmission efficiency, and allows for multi-channel utilization, crosstalk-proof, and robust against defects and obstacles. This magnificent performance is attributed to the peculiar property that antichiral one-way edge states exist only at zigzag edge but not at armchair edge of antichiral GPC. When we combine two rectangular antichiral GPCs holding left- and right-propagating antichiral one-way edge states respectively, bidirectionally radiating one-way edge states at two parallel zigzag edges can be achieved. Our observations can enrich the understanding of fundamental physics and expand topological photonic applications.
topological photonics one-way edge state photonic crystal beam splitting topological materials 
Opto-Electronic Science
2022, 1(5): 220001
Jing-Zhi Huang 1,2†Zi-Tao Ji 3†Jia-Jian Chen 1,2Wen-Qi Wei 4[ ... ]Jian-Jun Zhang 1,2,4,8,*
Author Affiliations
Abstract
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
5 National Information Optoelectronics Innovation Center, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
6 e-mail: wangzihao@iphy.ac.cn
7 e-mail: wangting@iphy.ac.cn
8 e-mail: jjzhang@iphy.ac.cn
A quantum dot (QD) mode-locked laser as an active comb generator takes advantage of its small footprint, low power consumption, large optical bandwidth, and high-temperature stability, which is an ideal multi-wavelength source for applications such as datacom, optical interconnects, and LIDAR. In this work, we report a fourth-order colliding pulse mode-locked laser (CPML) based on InAs/GaAs QD gain structure, which can generate ultra-stable optical frequency combs in the O-band with 100 GHz spacing at operation temperature up to 100°C. A record-high flat-top optical comb is achieved with 3 dB optical bandwidth of 11.5 nm (20 comb lines) at 25°C. The average optical linewidth of comb lines is measured as 440 kHz. Single-channel non-return-to-zero modulation rates of 70 Gbit/s and four-level pulse amplitude modulation of 40 GBaud/s are also demonstrated. To further extend the comb bandwidth, an array of QD-CPMLs driven at separate temperatures is proposed to achieve 36 nm optical bandwidth (containing 60 comb lines with 100 GHz mode spacing), capable of a total transmission capacity of 4.8 Tbit/s. The demonstrated results show the feasibility of using the QD-CPML as a desirable broadband comb source to build future large-bandwidth and power-efficient optical interconnects.
Photonics Research
2022, 10(5): 05001308
Author Affiliations
Abstract
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
2 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
We present a discovery of an unusual unidirectionally rotating windmill scattering of electromagnetic waves by a magnetized gyromagnetic cylinder via an analytical theory for rigorous solution to fields and charges and an understanding of the underlying mathematical and physical mechanisms. Mathematically, the generation of nonzero off-diagonal components can break the symmetry of forward and backward scattering coefficients, producing unidirectional windmill scattering. Physically, this windmill scattering originates from the nonreciprocal unidirectional rotation of polarized magnetic charges on the surface of a magnetized gyromagnetic cylinder, which drives the scattering field to radiate outward in the radial direction and unidirectionally emit in the tangential direction. Interestingly, the unidirectional electromagnetic windmill scattering is insensitive to the excitation direction. Moreover, we also discuss the size dependence of unidirectional windmill scattering by calculating the scattering spectra of the gyromagnetic cylinder. These results are helpful for exploring and understanding novel interactions between electromagnetic waves and gyromagnetic materials or structures and offer deep insights for comprehending topological photonic states in gyromagnetic systems from the aspect of fundamental classical electrodynamics and electromagnetics.
unidirectional electromagnetic windmill scattering magnetized gyromagnetic cylinder topological photonics 
Chinese Optics Letters
2022, 20(5): 053901
Author Affiliations
Abstract
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
2 Guangdong Jingqi Laser Technology Corporation Limited, Dongguan 523808, China
Nonlinear Raman–Nath diffraction (NRND) offers an effective way to realize multiple noncollinear parametric processes based on the partially satisfied transverse phase-matching conditions in quadratic nonlinear media. Here, the realization of ultrabroadband NRND (UB-NRND) driven by a high-peak-power ultrashort femtosecond pump laser in two types of nonlinear crystals is reported: periodically poled lithium niobate (PPLN) and chirped PPLN (CPPLN). Multi-order ultrabroadband Raman–Nath second-harmonic (SH) signal outputs along fixed diffraction angles are simultaneously observed. This distinguished transversely phase-matched supercontinuum phenomenon is attributed to the synergic action of natural broad bandwidth of an ultrashort femtosecond pump laser and the third-order nonlinear effect induced spectral broadening, in combination with the principal ultrabroadband noncollinear second-harmonic generation processes. The NRND process with multiple quasi-phase matching (QPM) interactions from CPPLN leads to the SH output covering a wide range of wavelengths between 389 and 997 nm and exhibiting an energy conversion efficiency several orders of magnitude higher than previous studies. This UB-NRND scheme would bring better techniques and tools for applications ranging from ultrashort pulse characterization and nondestructive identification of domain structures to accurate parameter monitoring of second- and third-order nonlinear susceptibilities within solid-state nonlinear microstructured materials.
Photonics Research
2022, 10(4): 04000905

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!